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IS

The notion of the driving traction on a surface of strain discontinuity

in a continuum undergoing a general thermo-mechanical process is defined

and discussed. In addition, the associated constitutive notion of a kingtic

relation, in which the normal velocity of propagation of the surface of

discontinuity may be a given function of the driving traction and tempera-

ture, is introduced for the special case of a thermoelastic material. t . \

J!



Various aspects of the theory of finite elastostatics for materials

characterized by non-elliptic elastic potentials have been studied in a

number of recent paperst ee for example Abeyaratne and Knowles (1987a,b,

1988a,b), Ball (1977) , Bal and James (1987), Ericksen (1975), Fosdick and

MacSithigh (1983), Gurtin (1 83), James (1981,1986), Knowles and Sternberg

(1978), Silling (1988). One ature of such materials is that, under suit-

able conditions, they can sus ain equilibrium deformations in which the

displacement gradient and str ss tensors suffer jump discontinuities across

certain surfaces in the body while the displacement and traction remain

continuous; such singular sufaces have been called equilibrium shocks. One

area in which the associatad theory finds application is that of the conti-

nuum-mechanical modeling/of a solid in equilibrium with more than one

"phase" present. InK Zs setting, an equilibrium shock corresponds to the

boundary between wo distinct phases of the material (Ball and James

(1987), Jamws (1981,1986), Silling (1988)).

A quasi-static motion involving equilibrium shocks at each instant may

be dissipative (Knowles (1979)): in any portion of the body that is trav-

ersed by a moving shock, the rate of work of the external forces differs

from the rate of storage of strain energy by the rate of work done in mov-

ing the surface of discontinuity. This latter rate of work can be expressed

as the integral over the shock surface of the product of a scalar "driving

traction" f with the component of shock velocity normal to the shock

itself. At each instant during the motion, the value of f at each point on

the singular surface can be calculated from the limiting values of the



deformation gradient on the two sides of the surface. If the driving trac-

tion f vanishes at all points of the shock for each equilibrium state

visited during a quasi-static motion, the motion is dissipation-free. An

equilibrium state for which f - 0 is said to satisfy the Maxwell condition.

In the presence of equilibrium shocks, the mechanical balance laws lead

to the usual field equations at points in the body away from the singular

surfaces and require the traction to be continuous across these surfaces.

However, on solving even the simplest of boundary-value problems for non-

elliptic elastic materials, one encounters a massive failure of uniqueness

of solution (Abeyaratne (1980), Abeyaratne and Knowles (1987a)). One way to

single out a preferred equilibrium field from among the infinitely many

available ones is to require that the field be stable in the sense that the

associated potential energy be an absolute minimum. If an equilibrium field

containing a shock is to be stable in this sense, it is known that the Max-

well condition f - 0 is necessary (Abeyaratne (1983), Ericksen (1975), Cur-

tin (1983), James (1981)).

A somewhat more general point of view holds that the lack of uniqueness

in the conventional equilibrium problems for non-elliptic elastic materi-

als arises from a constitutive deficiency associated with particles on the

shock surface. Such a view was adopted by Abeyaratne and Knowles (1988a,b)

in the one-dimensional context of bar theory. By exploiting an analogy

between the problem considered and internal-variable theories of inelastic

solids (see, for example, Rice (1971,1975)), they are led to postulate a

supplementary constitutive requirement in the form of a "kinetic relation"



between f and the velocity of the shock during a quasi-static motion. This

leads to a determinate macroscopic response (or force-elongation relation)

for the bar in quasi-static motions. In general, this response exhibits

rate- and history-dependence. Two limiting cases of the kinetic relation

describe rate-independent behavior: one corresponds to the Maxwell condi-

tion and hence to dissipation-free, reversible macroscopic response. The

other leads to a force-elongation relation similar to that associated with

rate-independent plasticity.

The investigations described above are for the most part carried out

within the framework of the purely mechanical theory of non-elliptic elas-

tic materials. They are limited to the study of equilibrium states or

one-parameter families of such states (i.e., quasi-static motions), and

they are often confined to one-dimensional settings as well. The purpose of

the present study is to consider the corresponding issues in a more gen-

eral, three-dimensional setting in which the material need not be elastic,

and both thermal and inertial effects are taken into account. In Section 2,

we recall the basic thermodynamic and mechanical laws and the associated

field equations, inequalities and jump conditions for a continuum under-

going a thermo-mechanical process in which displacement and temperature are

assumed to be continuous, but their gradients are permitted to jump across

a moving surface. We derive a useful representation of the entropy produc-

tion rate in Section 3, and we use it to introduce the notion of a driving

traction acting on a singular surface in an arbitrary continuum during a

thermo-mechanical process of the assumed type. We specialize the earlier

results to isothermal dynamic processes in Section 4. No constitutive



assumptions are invoked until Section 5, where we specialize the foregoing

results to the case of a continuum composed of a thermo-elastic material.

Section 6 is devoted to a discussion of the notion of a constitutive

"kinetic relation".

2. Balance laws. field equations and lump conditions

Consider a body B that occupies a region R in a reference configura-

tion. A motion of the body on a time interval [t0 ,tl] is characterized by

Aa one-parameter family of invertible mappings y(-,t): R - R* , with

y - Y(X,t) - x + U(X,t) for xR, teftO,tl]. (2.1)

A

We assume that the deformation y, or equivalently the displacement u, is

continuous with piecewise continuous first and second derivatives onA A
RX[tO,tll. Let F(x,t) - Grad Z(x,t) and v(xt) - a2(A,t)/at stand

respectively for the deformation gradient tensor and the particle velocity

at points (x,t) in space-time where they exist.

Let p(x) denote the mass density of B at the point x in the reference

configuration, b(x,t) the body force per unit mass, and a(x,t) the nominal

stress tensor. At each t, we require p(.) and b(.,t) to be continuous on R,

while a(.,t) is to be piecewise continuous with a piecewise continuous

gradient on R. The balance laws for linear and angular momentum require

acn dA + fpbdV - d/dtJpy dV~ (2.2)

aD D D



J X n dA + X pb dV - d/dt y x pv dV, (2.3)

8D D D

respectively, at each te[r 0 ,tl] and for all regular subregions DcR.

Next, let q(Z,t) denote the nominal heat flux vector, r(x,t) the heat

supply per unit mass and z(3,t) the internal energy per unit mass. At each

t, we suppose that r(.,t) is continuous on R and that q(.,t) is piecewise

continuous with a piecewise continuous gradient on R. The internal energy

c(.,.) is required to be piecewise continuous with piecewise continuous

first derivatives on Rx[t 0 ,tl]. The first law of thermodynamics requires

that at each instant t,

Jcn-v dA + J PbZvdV +Jq.n dA + JprdV
aD D 8D D

- d/dt Jpc dV + d/dt J(1/2) pv-v dV, (2.4)

D D

for every regular DCR. Finally, let 0(x,t) denote the absolute temperature

and n(x,t) the entropy per unit mass. At each t, we assume that 8(.,t) is

continuous with a piecewise continuous gradient on R, while n(.,.) is

assumed to be piecewise continuous with piecewise continuous first deriva-

tives on Rx[t 0 ,tl]. The rate of entropy Droduction in a regular region DcR



is defined to be

r(t;D) - d/dt J P7 dV J.n/0 dA - I pr/9 dV. (2.5)

D aD D

The Clausius-Duhem version of the second law of thermodynamics requires

r(t;D) > 0 for DcR, te(t0 ,tl]. (2.6)

At a fixed instant t, localization of the balance laws (2.2)-(2.4) and

the inequality (2.6) at a point x at which F, F, v, q, , and q are all

continuous yields the following familiar local results:

Div + p b- pv,

OFT - FaT,#W 0" ( 2 .7 )

ae.F + Div q + pr - p(,

Div(q/e) + prle : p;.

On the other hand, suppose that S(t) is a regular surface in R at time t

across which some or all of the thermo-mechanical quantities listed above

suffer jump discontinuities. Localization of (2.2)-(2.6) at a point x on

S(t) yields the following jump conditions:

[[Gn]] + p I[Z]] Vn -0 1
[[an.v]] + [[p(c + v-*X/2)]] Vn + [[q.n]] - 0, on S(t), (2.8)

[[p',I Vn + ([q.n/81] _ 0,
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where

Vn - V-.n, (2.9)

and V - V(x,t) is the velocity of the point x on the moving surface S(t).

The unit normal n on the singular surface S(t) is chosen such that Vn 2 0;

if Vn > 0, the positive side of S(t) is the side into which V (and there-

fore n) points. If g(x,t) denotes a generic field quantity that jumps

across S(t), we write [[g(x,t)]] - g(],t) - g(x,t), where g(3,t) and g(x,t)

stand for the limiting values of g at the point x on S(t) from the positive

and negative sides, respectively.

In addition to the jump conditions listed in (2.8), one also has the

kinematic results

[[FI] I- 0, [[v] - - [[Fl] V on S(t) , (2.10)

where I is any vector tangent to the singular surface S(t). The jump

conditions in (2.10) are immediate consequences of the smoothness require-

ments imposed on the deformation (2.1).

Conversely, the field equations (2.7) together with the jump conditions

(2.8), (2.10) imply the global balance laws (2.2), (2.3), (2.4), (2.6). All

of the above results may be found in Trusdell and Noll (1965).
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3. Shock driving tracton.

In the present section, we first introduce the notion of the shock

driving traction associated with a thermo-mechanical process in an arbi-

trary continuum. The process is assumed to possess the smoothness specified

in the preceding section; in particular, both displacement and temperature

are required to be continuous across the moving singular surface S(t). We

then make use of the shock driving traction to derive an alternate form for

the entropy and energy jump conditions (2.8)3 and (2.8)2, respectively.

The concept of shock driving traction emerges naturally from an alter-

nate representation for the rate of entropy production defined in (2.5). To

obtain this representation, we begin by putting the energy jump condition

(2.8)2 into a form more useful for our purposes. In the identity

((Z2vj - (1/2)(y + + (3.1)

we replace [(an]] and ([v]] on the right by substituting from (2.8)1 and

(2.10)2, respectively. This gives

[[aiv.] ] - -(1/2) p [[v.v] ] Vn - (1/2) (V + n)-([[F]] V) (3.2)

By making use of (2.10)1, one can show that

(an + -) - V - (3.3)
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where the dot product on the right is that associated with a pair of ten-

sors: A'B Trace (ABT). Combining (3.2) and (3.3) yields

[.v]] - -(1/2) p Vn [['.]] (1/2) Vn (o + [S(t). (3.4)

Using (3.4) to replace ([gCan]] in (2.8)2 then supplies the alternate

version of the energy jump condition:

p Vn [I] - (1/2) Vn (a + a)-F]] - [[q-.]] on S(t). (3.5)

We turn now to (2.5) and assume that, at each instant t, the region DCR

is divided into two parts D+(t) and D'(t) by the moving surface of discon-

tinuity S(t). Allowing for the jump in specific entropy across S(t), we may

write (2.5) as

r(t;D) ptJ dV - [prfl] Vn dA - Jq.-,2/ dA - j pr/e dV , (3.6)

D S(t)nD 8D D

which is equivalent to

r(t;D) pJA dV - J[[p17] Vn A - Jq.n/e d - f q.n/0] ] dA

D S(t)nD aDuaD S(t)nD

- pr/e . (3.7)

D
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Applying the divergence theorem to the third integral on the right in

(3.7) and then utilizing (2.7)3 to eliminate Div q yields

pO+c.a -pt 1-Grad 8
r(t;D) . dV

D

n)+ [[Pn~el Vn 1
- J{ dA, (3.8)

S(t)nD

where we have made use of the continuity of the temperature e across

S(t). Finally, version (3.5) of the energy jump condition may be used to

eliminate the term [[fq-n]] in (3.8), yielding the desired representation

for the rate of entropy production:

r(t;D) - rloc(t;D) + rcon(t;D) + rs(t;D) , (3.9)

where

rloc(t;D) - dV, (3.10)

D

q q. Grad 0

rcon(t;D) - J dV (3.11)

D
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pe - a (a ( +a) F/2 ] Vn
rs(t;D) - I dA . (3.12)

S(t)nD

In (3.9), the total rate of entropy production r(t;D) at the instant t for

the subregion DCR is decomposed into three parts: rloc arises from local

dissipation in the material away from the singular surface; rcon is the

entropy production rate due to heat conduction; finally, rs represents the

contribution to the entropy production rate arising from the moving singu-

lar surface S(t). A similar decomposition in the absence of a surface of

discontinuity is given by Truesdell and Noll (1965), § 79.

The internal dissioation 6(x,t) is given by

6 - 0; + (1/p)Z *F - £ ; (3.13)

see Chapter 2 of Truesdell (1969). The local entropy production rate

rloc(t;D) of (3.10) may be written in terms of 6 as follows:

rloc(t;D) - f p(i)S(x,t)/B(L,t) dV . (3.14)

D

Next, it is convenient to introduce the Helmholtz free energy per unit

mass 0(,t) defined by

- (,t) - O(X,t)"(X,t) , XER, te[t 0 ,tl] (3.15)
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We now define the (scalar) shock driving traction f(L,t) on the singular

surface S(t) by

f(!,t)- p( )[[(A,t)]] (1/2) (xt)+;(xt) [[F(x,t)]],

xES(t), te[t0,tl] (3,16)

By (3.15), (3.16) and (3.12), we may rewrite the contribution rs(t;D) to

the rate of entropy production due to the moving singular surface in terms

of the shock driving traction f(;,t), the temperature e(x,t) on S(t) and

the normal velocity Vn(x,t) of S(t):

rs(t;D) - J f(x,t) Vn(,t)/e(Z,t) dA. (3.17)

S(t)nD

We note from (3.16) that, if the thermo-mechanical process under con-

sideration is smooth in the sense that the free energy 0 and the deforma-

tion gradient F are continuous everywhere at all times, then the shock

traction f on any surface vanishes.

Employing the representation for the entropy production rate furnished

by (3.9), (3.11), (3.14) and (3.17) in the Clausius-Duhem inequality (2.6)

and localizing the result at a point xaway from the singular surface S(t)

yields the inequality

p6 + (i/e)qGrad 0 L 0 on R-S(t), te[t 0 ,tl]. (3.18)
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This result, which can also be derived directly from (2.7)3, (2.7)4 and

(3.13) and which in fact may be used in place of (2.7)4, may be found in

Truesdell (1969), p.34, Eq. (2.47). If the localization of the Clausius-

Duhem inequality is instead carried out at a point x 2n the singular sur-

face, the result is the condition

f Vn 2 0 on S(t), te(t0 ,tl] , (3.19)

which may also be derived directly from (2.8)3 with the help of (3.5),

(3.15) and (3.16). For the special case of isothermal, quasi-static pro-

cesses in thermoelastic materials, the counterpart of (3.19) was obtained

by Knowles (1979).

Conversely, if the local results (3.18) and (3.19) hold, then it fol-

lows from (3.10)-(3.12) that

rloc(t;D) + rcon(t;D) : 0 , rs(t;D) > 0 (3.20)

and hence from (3.9) that the Clausius - Duhem inequality holds. Also, it

is clear that the entropy production rate r vanishes for every sub-region D

if and only if equality holds in both (3.18) and (3.19). If the inequality

in (3.19) is strict on DnS(t), we may conclude from (3.9) and (3.17) that

the shock traction associated with the moving singular surface makes a pos-

itive contribution to the rate of entropy production r(t;D) and thus repre-

sents a dissipative effect.
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The alternate version (3.5) of the original energy jump condition

(2.8)2 may be rewritten in still another form with the help of (3.15) and

(3.16):

pO[[,]] vn- - f Vn - [[I.n]] on S(t), tF[to,tl]. (3.21)

The original set of jump conditions (2.8) may be replaced by (2.8)1, (3.21)

and (3.19).

Note that no constitutive assumptions have yet been made. The foregoing

analysis, however, would n= apply to the classical adiabatic theory of

shock waves in gas dynamics (see, e.g., Courant and Friedrichs (1948)),

since we assume that the temperature is continuous across the singular

surface S(t).

4. Isothermal processes in a continuum.

In this section, we specialize the foregoing results to the case of

isothermal processes, by which we mean those for which

e(x,t) - 00 - constant forxc'R, te[t 0 ,tl] (4.1)

When (4.1) holds, the global form (2.4) of the first law can be used to

eliminate the heat flux and heat supply terms from the original representa-

tion (2.5) for the entropy production rate. After doing so and making use

of the definition (3.15) of the free energy 0, one finds that
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r(t;D) -(1/0 0) (Jom-v dA + Jpb-v dV-d/dt Jp(o + v-,v/2) dV ].(4.2)
8D D D

Since the contents of the braces in (4.2) represent the excess of the rate

of mechanical work over the rate of increase of the sum of free and kinetic

energies associated with D, one infers from (4.2) that, for isothermal

processes, the entropy production rate coincides with the rate of mechani-

cal dissipation per unit temperature.

On the other hand, with (4.1) in force, (3.11) shows that the contrib-

ution rcon(t;D) to r(t;D) vanishes, so that by (3.9), (3.14) and (3.17), we

also have

r(t;D) - (1/00) (Jp6 dV + Jf Vn dA ].(4.3)
D S(t)nD

Comparison of (4.2) and (4.3) yields the identity

J n-v dA + F bvdV + [(f)Vn dA

8D D S(t)nD

f p6 dV + d/dt f p(o + v-v/2) dV for DCR, te[tOtl]. (4.4)

D D
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This mechanical balance motivates our choice of the name shock drivi

traction for f: Equation (4.4) suggests that -f(L,t) be interpreted as the

component of a vector traction acting normal to the singular surface S(t)

and exerted by the surface on the body at the point x at time t. Equiva-

lently, f(x,t) may be regarded as a normal traction applied to S(t) by the

body.

5. Thermoelastic materials.

5.1. General processes in thermoelastic materials. The preceding

discussion has made no use of special constitutive relations for the con-

tinuum under consideration. We now assume that, for the material at hand,

there is a characterizing internal energy potential C(F,q) such that

A
C(, - ((,t), (,t)), 1

A 1(5.1)to(1, t) -PcF(3(S,t),n(x,t)), J 5I

(]. t) A

A

moreover, it is assumed that £(L,.) is invertible for every tensor F with

positive determinant. We call such a material thermoelastic. To avoid

cumbersome formulas, we have assumed that p and c(.,.) are independent of

so that the body is homogeneous in the reference configuration.

For a thermoelastic material, (5.1) imply that

p; - a.F + pfv on R-S(t) , (5.2)

Ain O l lInn l
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so that the internal dissipation 5 of (3.13) vanishes. It then follows from

(3.14) that

rloc(t;D) - 0 (5.3)

for all t and all DcR, whence (3.9) becomes

r(t;D) - rcon(t;D) + rs(t;D), (5.4)

where rcon and r. are given by (3.11) and (3.17), respectively. Thus in

everX process in a thermoelastic material, entropy production is due

only to heat conduction and the motion of the singular surface S(t).

By (5.1)3 and the assumed invertibility of t,(I,.), we may write 1 -

A A
I(F,) and hence introduce the Helmholtz free energy potential 0 for a

thermoelastic material through

A A (55) 
k (Z,q(F,8)) -(F,) 55

Then by (3.15), O(x,t) - O(F(x,t),e(x,t)), and (5.1), (5.5) show that,

for any process,

A A

Z(e,t) - p h e shock driving(t,t) rct io( t) (5.6)

For a thermoelastic material, the shock driving traction f(x,t) intro-
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duced for arbitrary thermo-mechanical processes in (3.16) can be repre-

A
sented in terms of the functions p and 0 characteristic of the material as

follows:

f - p[[(E,O)]] - (1/2 )p[ OF(,P) + O6 (F,9) o[[ ]) (5.7)

where F - F(-,t) and F - F(-,t) represent the limiting values of the

deformation gradient tensor on the positive and negative sides of S(t),

respectively.

5.2 Isothermal processes in thermoelastic materials. For an isothermal

process, (4.1) and (3.11) show that rcon - 0 , so that using (3.17), one

may further reduce (5.4) to

r(t;D) - rs(t;D) - (1/00) J f Vn dA . (5.8)

S(t)nD

Thus for isothermal processes in thermoelastic materials, entropy produc-

tion arises solely from the motion of the surface of discontinuity S(t).

The local consequence (3.19) of the second law at points on the singular

surface of course continues to hold.

When considering isothermal processes in thermo-elastic materials, it

is convenient to introduce the elastic Rotential W at the temperature 00 by
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setting

A
W(F) - p(F,00 )  (5.9)

for every tensor F with positive determinant. Then (5.6)1 reads

O(!,t) - WE(F(x,t)) for xeR-S(t), te[t 0 ,tl]. (5.10)

The remaining mechanical field equations (2.7)1,2 are

Div L + pb - p,

aFT-FT on R-S(t), 
(5.11)

while the mechanical jump conditions are (2.10)2 and (2.8)1:

OWy]] - - [] , (.n]] + p[[v]]Vn - on S(t); (5.12)

(5.10) (5.12) comprise the usual field equations and jump conditions of

elastodynamics. From (5.7), (5.9), the shock driving traction f may be

written in the form

f - ([W(t)fl - (l/2) W (£) + WF() [[F[3] (5.13)

The inequality (3.19) must also hold:
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f Vn 2: 0 on S(t). (5.14)

5.3 Eauilibrium states and isothermal guasi-static processes in thermo-

elastic materials. Assume that the material is thermoelastic, and suppose

that the displacement field u in (2.1) is independent of time. Suppose fur-

ther that the temperature 8 is constant, so that (4.1) holds. Among the

field equations (2.7), the purely mechanical ones are now

Div a + pb -10
0 on R-S. (5.15)aFT - FOT ,

In addition, there is the mechanical constitutive requirement (5.10):

a-WF(E) on R-S. (5.16)

The system (5.15), (5.16) with F - 1 + Vu comprises the field equations of

elastostatics. When this system fails to be elliptic, it may possess weak

solutions for which Y jumps across a singular surface S; see Knowles and

Sternberg (1978), Gurtin (1983), Rosakis (1988). Such solutions must sat-

isfy the purely mechanical jump conditions (2.10)1 and (2.8)1 specialized

to the equilibrium case:

"£,n]] - 0 [[Fil - 0 on S. (5.17)

n~n--nmnm nm nmulmn Al unAW n
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Because of the form of the Jump condition (5.17) 1 in the equilibrium

case, the formula (5.13) for the shock traction may be simplified to give

f - ([W(F)]] - Wz(F).([F]] (static case). (5.18)

This representation of the shock driving traction for equilibrium deforma-

tions of an elastic solid is equivalent to one derived by Yatomi and Nish-

imura (1983). An alternative formula for f in the present static case is

readily shown to be

f - n-[[P(F)jjn , (static case). (5.19)

where n is the unit normal to the surface of discontinuity S, and P(

is the energy-momentum tensor introduced by Eshelby (1956,1970, 1975):

P(F) - W(j)l - FTWF( ) • (5.20)

here 1 is the identity tensor, In the form (5.19),(5.20) appropriate to the

equilibrium case, the entity f first appeared as the "force on a defect" in

the work of Eshelby (1956). This representation for f is also equivalent to

that for the force on the interface between two phases derived by Eshelby

(1970) and discussed by Rice (1975). The formulas (5.19), (5.20) may also

be found in Knowles (1979).
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An isothermal quasi-static 2rocess on a time interval [t0 ,tl] is a

one-parameter family of equilibrium fields u(-,t) and a(.,t) with

smoothness as specified in Section 2 and satisfying (5.15) - (5.17) at each

te[to,tl]. When at each instant t the fields involve a singular surface

S(t) across which F(.,t) jumps, the inequality (5.14) is imposed as a

requirement, f being given by (5.18) at each t.

6. Kinetic relations.

Using the one-dimensional, isothermal theory of bars of non-elliptic

elastic material in tension (Abeyaratne and Knowles (1988a,b)), we have

considered a bar lying along the x-axis in an equilibrium state in which

there is a strain discontinuity located at an arbitary station x - s. The

force F acting on the bar is assumed to be given, and the stress response

of the material is taken to be one for which the stress at first rises with

increasing strain, then declines, and finally rises again. For each F in a

certain range, there is a one parameter family, parameter s, of such

equilibrium states of physical interest. For each such state, the overall

elongation e of the bar depends on both F and s, as do other macroscopic

quantities such as the total strain energy E and the total potential energy

U - E - Fe in the bar: e - e(F,s), E - E(F,s), U - U(F,s). It turns out

that, in this equilibrium theory, aU(F,s)/8F - -e, and aU(F,s)/as - Af

where A is the cross-sectional area of the bar, and f is the one-

dimensional counterpart of the static driving traction given in (5.18).

This suggests that the location s of the strain discontinuity plays the

role of an "internal variable" whose "conjugate force" is proportional to

the driving traction f. In the references cited above, quasi-static pro-
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cesses are considered in which at each instant the bar is in one of the

equilibrium states just described. Admissible quasi-static processes are

those that statisfy the one-dimensional counterpart f! 0 of (5.14).

Even with admissibility imposed as a requirement, specifying the force his-

tory F(r), 0 : r : t, in a quasi-static motion fails to determine the

current value of the elongation e(t), since the shock location (or internal

variable) s(t), must be specified as well. This suggests a constitutive

deficiency. In internal variable theories designed to model microstructural

effects on inelastic macrostructural behavior, a so-called "kinetic rela-

tion" giving the time rate of change of the internal, or microstructural,

variable as a function of the associated "thermodynamic force" is commonly

added as a part of the constitutive description; see, for example, Rice

(1970, 1971, 1975). In their one-dimensional setting, Abeyaratne and

Knowles (1988a,b) adopt this point of view and hence require that the shock

location s(t) and the associated driving traction f(t) be related by a

kinetic law of the form ;(t) - V(f(t)), where the kinetic response function

V is determined by the material. Such a kinetic relation then couples the

time-evolution of the location of the surface of strain discontinuity to

the local strains on either side of the jump.

The isothermal equilibrium problem of the twisting of an infinite

medium containing a circular hole considered by Abeyaratne and Knowles

(1987a,b) involves cylindrical geometry in plane strain and is essentially

one-dimensional because of axial symmetry. The surface of discontinuity is

now circular, and its radius plays the role of the location s of the strain

jump in the tensile bar problem. The formalism appropriate to internal
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variables emerges in this problem as well, and an additional constitutive

postulate in the form of a kinetic relation may be proposed here on similar

grounds. It would now take the form

Vn(X,t) - V(f(x,t)) xCS(t), (6.1)

where x is the position vector of a typical point on the cylindrical sur-

face of discontinuity S(t), f(xt) is given at each t by (5.18) specialized

to plane strain for incompressible materials, and Vn(x,t) is the component

of velocity of the singular surface normal to itself, i.e. in the radial

direction. Again, V(f) is a function determined by the material. To be con-

sistent with the admissibility requirement (5.14), V must be such that

V(f)f 2 0 (6.2)

for all possible values of f.

The consequences of imposing a kinetic relation in the one-dimensional

setting of the bar are discussed in detail in Abeyaratne and Knowles

(1988a,b) and will not be repeated here. A similar discussion could be pro-

vided for the twist problem. While in both cases the motivation for the

imposition of the kinetic relation as a requirement is taken from internal

variable theories of inelastic behavior, the possibility of imposing it

comes about because of the lack of uniqueness of weak solutions to the

relevant equilibrium problem. Indeed, for a given force F in the bar prob-

lem, for example, solutions with a sJe "equilibrium shock" at x - s fail
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to be unique precisely to the extent that their totality comprises a one-

parameter family (parameter s). This is exactly the extent of lack-of-

uniqueness needed to make room for the kinetic law as an additional

requirement. Thus :he equilibrium problem seems to be under-determined to

precisely the degree necessary to accommodate a kinetic relation applicable

to isothermal guasi-static processes in the bar. Entirely similar remarks

apply to the axially symmetric twist problem.

The general proposal of a constitutive relationship between the driving

traction f(j,t) and the normal velocity Vn(X,t) of the material singular

surface S(t) during quasi-static processes in a thermoelastic material may

be examined from the perspective of irreversible thermodynamics. In the

representation for the entropy production rate r provided by (5.4), (3.11)

and (3.17), one could view the ratios (Grad 0)/02 and f/O as thermodynamic

"affinities" and the terms q and Vn as the corresponding "fluxes"; see

Chapter 14 of Callen (1985), Chapter 14 of Kestin (1968), and Lecture 7 of

Truesdell (1969) for discussions of these notions. In the theory of irrev-

ersible processes, it is customary to postulate a constitutive relationship

in which the present value of each flux is a function of the present value

of the affinities and perhaps of their past histories as well. In our set-

ting, one might - as a simplest case - postulate a relationship between the

present values of each flux and its corresponding affinity, as in the

theory of "purely resistive" thermodynamical systems (Callen (1985), Chap-

ter 14). This would give

q(,t) - *(Grad 9(x,t)/0 2 (xt)), xeR-S(t), (6.3)

(,xt -,i nn Q* mmmmmmmm, (63
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and

Vn(.,t) - V,(f(xt)/O(Xt)), xeS(t) (6.4)

where Q* and V* are functions determined by the material; the constitutive

statements (6.3) and (6.4) represent a heat conduction law and a kinetic

relation, respectively. The consequence (5.14) of the Clausius-Duhem

inequality would require that

V* (f/8)f/e 2 0 (6.5)

for all possible values of f/P. For isothermal processes of the type

discussed in the preceding paragraphs of this section, (6.4) reduces to

(6.1) with V(f) - V *(f/ 0 ), and (6.5) reduces to (6.2). We observe that, if

the kinetic response function V* (or, equivalently, V) is continuous, then

(6.5) requires that

V*(0) - V(O) - 0. (6.6)

If the body is at a uniform temperature and in a state of mechanical

equilibrium involving an equilibrium shock S at all points of which the

Maxwell condition f - 0 holds, we say the body is in a Maxwell state. If V*

is smooth and departures from a Maxwell state are slight, so that f/6 is

small, one might replace (6.4) by its linearization. (Linearized kinetic

relations are often used in irreversible thermodynamics to describe pro-
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cesses that are "close to thermodynamic equilibrium".) In view of (6.6),

this would yield

Vn(3Lt) - Pf(,,t)/O(jt) , xES(t), (6.7)

where v - V'(O) is a material constant; by (6.2), v is necessarily posi-

tive. A linear relation of the type (6.7) between the driving traction and

the velocity of the singular surface was shown by Abeyaratne and Knowles

(1988b) to lead to a conventional type of viscoelastic macroscopic response

in the one-dimensional theory of quasi-static processes in tensile bars

composed of a particular non-elliptic elastic material.

Note that the singular surface S(t) lies in the region occupied by the

body in the reference configuration; thus the driving traction f might more

precisely be called the nominal driving traction. The kinetic relation

(6.4) is thus a "Lagrangian", or "material", assertion. It is readily shown

that it conforms to the principle of material frame indifference.

For isothermal, quasi-static processes in a thermoelastic material, the

state of the body at each instant is one of mechanical equilibrium, and an

equilibrium shock cannot occur unless the corresponding elastic potential

is non-elliptic. The equilibrium shock may be thought of as a phase bound-

ary, and the quasi-static process may be viewed as one in which particles

of the body are being transformed from one phase to another. The normal

velocity Vn is clearly a measure of the rate at which this takes place, and

the relation (6.4) may thus be regarded as controlling the kinetics of the
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phase transformation; see, for example, Section 3.1 of Fine (1964) or Sec-

tion 1.9 of Porter and Easterling (1981) for related discussions.

If the kinetic relation is to be constitutive, it must apply not only

during quasi-static processes, but when inertial effects are included as

well. For dynamical processes, it is to be expected that moving surfaces of

strain discontinuity S(t) - counterparts of ordinary shock waves, for

example - can occur which are not phase boundaries, and for which a

supplementary relation such as (6.4) is thus expected to be inappropriate

on physical grounds. From the mathematical point of view, it is the lack

of uniqueness of solutions of equilibrium boundary value problems for

non-elliptic elastic materials that allows the prescription of a supplemen-

tary kinetic relation for quasi-static processes. Whether there is a pre-

cisely analogous lack of uniqueness for the boundary-initial-value problems

arising in the dynamics of non-elliptic elastic materials, and how in

general to distinguish phase boundaries from ordinary shock waves, become

questions of some importance. In the mathematical study of systems of con-

servation laws in one space dimension (see, for example, Dafermos

(1983,1984), Lax (1973)), it is known that the solution to the initial-

value problem subject to an "entropy inequality" such as (2.8)3 (or, equi-

valently, (3.19)) is unique, provided that the curvature of the underlying

stress-strain relation is always of one sign. In the absence of both con-

vexity and concavity, the entropy inequality is not strong enough to secure

uniqueness. The fact that the entropy inequality must be supplemented in

order to assure uniqueness for the initial value problem for such materials

reflects the need for an additional requirement of a constitutive nature,



--31--

as distinguished from a fundamental thermo-mechanical principle. A kinetic

relation such as (6.4), in which f is now given by the representation (5.7)

pertinent to n..mical processes and the material function V* is subject to

the requirement (6.5) imposed by the entropy inequality, might provide an

appropriate supplementary constitutive requirement. Additional restric-

tions strong enough to guarantee uniqueness in the initial value problem in

one space dimension for materials whose stress-strain relation is neither

convex nor concave have been investigated from viewpoints different from

the present one by a number of authors: see, for example, Hatori (1986),

James (1980), Oleinik (1959), Shearer (1985) and Slemrod (1983).
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